Ample stable vector bundles on rational surfaces

نویسندگان

چکیده

We study ample stable vector bundles on minimal rational surfaces. give a complete classification of those moduli spaces for which the general bundle is both and globally generated. also prove that if V any bundle, then large enough direct sum V⊕n has deformations unless there an obvious numerical reason why it cannot. Previous work in this area mostly focused rank two relied primarily classical sconstructions such as Serre construction. In contrast, we use recent advances to obtain strong results rank.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-2 Ample Vector Bundles on Some Smooth Rational Surfaces

Some classification results for ample vector bundles of rank 2 on Hirzebruch surfaces, and on Del Pezzo surfaces, are obtained. In particular, we classify rank-2 ample vector bundles with c2 less than 7 on Hirzebruch surfaces, and with c2 less than 4 on Del Pezzo surfaces.

متن کامل

Chern Numbers of Ample Vector Bundles on Toric Surfaces

Let E be an ample rank r bundle on a smooth toric projective surface, S, whose topological Euler characteristic is e(S). In this article, we prove a number of surprisingly strong lower bounds for c1(E) and c2(E). First, we show Corollary (3.2), which says that, given S and E as above, if e(S) ≥ 5, then c1(E) ≥ r2e(S). Though simple, this is much stronger than the known lower bounds over not nec...

متن کامل

Stable vector bundles on algebraic surfaces

We prove an existence result for stable vector bundles with arbitrary rank on an algebraic surface, and determine the birational structure of certain moduli space of stable bundles on a rational ruled surface.

متن کامل

A Note on Moduli of Vector Bundles on Rational Surfaces

Let (X,H) be a pair of a smooth rational surface X and an ample divisor H on X . Assume that (KX , H) < 0. Let MH(r, c1, χ) be the moduli space of semi-stable sheaves E of rk(E) = r, c1(E) = c1 and χ(E) = χ. To consider relations between moduli spaces of different invariants is an interesting problem. If (c1, H) = 0 and χ ≤ 0, then Maruyama [Ma2], [Ma3] studied such relations and constructed a ...

متن کامل

Rank-3 Stable Bundles on Rational Ruled Surfaces

In this paper, we compare the moduli spaces of rank-3 vector bundles stable with respect to diierent ample divisors over rational ruled surfaces. We also discuss the irreducibility, unirationality, and rationality of these moduli spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Algebra

سال: 2022

ISSN: ['1532-4125', '0092-7872']

DOI: https://doi.org/10.1080/00927872.2022.2042548